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ABSTRACT

The design of control laws to damp flexible structural modes requires accurate math
models. Unlike the design of control laws for rigid body motion (e.g., where robust
control is used to compensate for modeling inaccuracies}, structural mode damping
usually employs narrow band notch filters. In order to obtain the required accuracy in
the math model, maximum likelihood estimation technique is employed to improve
tlle accuracy of the math model using flight data. This paper presents all phases of this
methodology: (I) pre-flight analysis (i.e., optimal input signal design for flight test,
sensor location determination, model reduction technique, etc.), (2} data collection and
preprocessing, and (3} post-flight analysis (i.e., estimation technique and model
verification}. In addition, a discussion is presented herein of the software tools used for
this study and the need for future study in this field.
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The design of control laws to damp flexible structure modes requires accurate math

models of the dynamic system. To obtain the required accuracy of a math model,

the parameter estimation technique using maximum likelihood estimation is

employed to improve the accuracy of the model based on flight data. This paper

presents all phases of this methodology: pre-flight analysis (i.e., optimal input signal

design for flight test, sensor location determination, model reduction technique,

etc.), data collection and preprocessing, and post-flight analysis (i.e., estimation

technique and model verification). The results of this study indicate that the

parameter estimation technique (i.e., maximum likelihood estimation) is an

effective and powerful technique in modifing high-order aeroelastic aircraft models.

However, the accuracy of the results depends upon the fidelity of the theoretical

model with regards to the correct number of dominant modes for the desired

frequency bandwith in the model (i.e., model order). If the number of modes in the

model are not representative, then an identification problem can occure in the

parameter estimation technique. Nevertheless, this problem can be overcome using

the system identification technique.



INTRODUCTION

Having an accurate mathematical representation is fundamental to any aircraft

control system design. In general, aircraft models are developed from a theoretical

basis and modified by analyzing the experimental data (i.e., wind-tunnel data for

aerodynamic models or ground shake test data for structural models). Although

present techniques provide very good dynamic models for the design stages of an

aircraft, often these models do not match the actual dynamic flight response. This

problem has generated a need for advanced system identifiaction and parameter

estimation techniques in upgrading dynamic models of an aircraft based on flight

test data. This modeling problem is more apparent with high-order aeroelastic

models with which our experince with modeling techniques is limited.

Low-frequency structural modes are easily excited for a jet transport with a long

fuselage. This excitation causes a lateral ride discomfort in certain flight conditions.

In order to design a yaw damper to dampen Dutch roll response and suppress the

undesirable low-frequency structure modes by means of active control, an accurate

aeroelastic model of the aircraft must be available. In this study, parameter

estimation technique is applied to upgrade the high-order aeroelstic math model of

a jet transport. The following is a summary of the parameter estimation technique

using maximum likelihood estimation.

Maximum Likelihhood Estimation

Suppose the actual system is described by (Reference 1):

_(t) = A x(0 +B u(t) +S s (t) +F n(t)

z(ti)=C x(t i)+Du(ti)+Hs(t i)+Gm(t i) (1)

where



x(t) state vector
u(t) control vector

z (t I ) measurement
s (t) bias vector

n (t) process noise

m (t i ) measurement

t t time sample

A ,B ,C ,D ,S ,H,F ,G

n (t) and m(t)

vector

noise

system matrices with unknown parameters

are zero mean ,Gaussian and independent noise

Assume k is the vector of unknowns that contains elements of the system matrices

A, B, C, D, S, H, F and G. The objective is to maximize the probability distribution of

unknowns (i.e., k) when the measurements z are available. Therefore, maximizing

P(k/z), where P is the probability distribution function of k given z.

By Bayes' rule:

P(k/z) P(z) = P(k,z)

or

P(k)

P(k/z) = P(z/k) p(z)

= P(z/k) P(k) (2)

(3)

Since in these equations z is given, so P(z) becomes a constant. Assume there is no a

priori preference for k, so P(k) becomes a constant. Therefore, P(z/k) differs from

P(k/z) only by a constant. In other words equation (3) becomes:

P(k/z) = P(z/k) .constant (4)

Equation (4) indicates that P(z/k) may be maximized instead of P(k/z). Therefore,

using Gaussian assumption, the likelihood ratio may be written as:

_1

P(z / k) = [ (2_) L GG*[ ] _-n _ ,exp ] _, [zk(ti)-z(ti) ]* (GG*)-' [z k (ti)-z(ti) ]
i=1

where

z k (ti) predicted estimate at time ti

GG* measurement noise covariance matrix

L number of measurements

(5)

gO6



If the logarithm of equation (5) is taken, the consatnt terms are eliminated by the

maximization, and the equation is multiplied by -1 to do minimization rather than

maximization, then equation (6) will be obtained as:

N

= I z(ti) _ (GG*)- 1J(k) _- _2 {[z k (t i)-
i=1

[Z k (t i ) - Z (t.)]},

(6)

where J(k) is the cost function to be minimized. Two steps are taken to obtain zk(ti).

Prediction step:

where

Xk(ti+l) ----(_ Xk(t i) + tI#u(ti+1 /2)

Zk (ti+ 1) ----C Xk(ti+ I) +D u(ti+ I)

t

(_ = e A at and • = J'oeA * ds

(7)

and the correction step:

Xk(ti+ 1)= Xk(ti+ I)+K [z(ti+ l)-zk(ti+l) ]

K in equation (8) is the Kalman filtergain matrix given by:

K =P C* (GG*)- I

(8)

(9)

where P is the solution to the discrete time Riccati equation:

1 pc, (GG,)- IC p + FF, = 0
AP +PA* - A---t (10)

After obtaining the cost function J(k), the Newton-Raphson algorithm is used

iteratively to minimize the cost function by revising the unknowns parameters.

ki+ , = ki - {V_, J (ki)}-' {V*k J(ki) } (11)



This algorithm requires an intial estimate for the vector of unknowns (k0). A priori

estimate is available for each unknown parameter through the analytical model.

The MMLE software tool developed by NASA Dryden is a parameter estimation

program supporting this estimation technique. This software has been modified by

Boeing to accept and handle higher order models. A comprehensive description of

this software tool is described in Reference 1.

PRE -FLIGHT ANALYSIS

A sixtieth order linear aeroelastic math model for a flight condition of Mach .6

speed, 15000 foot altitude, and no turbulance, and cruise configuration of a jet

transport was provided in the form of:

Mfi+C_l+Kq=u (12)

where M

C

K

q

U

mass matrix

damping matrix

stiffness matrix

generalized coordinate

control inputs

The model is defined in the inertial axis system, and the dynamics (q), consist of

rigid body and flexible modes. The model is tuned using data from ground shake

testing. The system of equations (12) was transformed into state-space form using

the following transformation:



therefore the system equation (12) becomes:

= Am Xm +Bm u

y =Cm Xm +Din u

where

(13)

and

0Am = _M-1K

[o]nm-
M-1

This transformation always exists because the mass matrix is positive definite.

Although this is a well-posed theoretical problem, it is not trivial. The flexible

model is usually on the order of one hundred states, thus causing numerical

inaccuracies in the inversion of the mass matrix. In our analysis the software

package MPAC was used to perform the transformation. (MPAC is a numerically

robust modem control and analysis software tool developed by the Boeing

Company.)

For the identification process, the system equation (13) was transformed into the

conjugate modal form using the following transformation:

m=T-lxm

Equation (13) becomes:

where

th=Am+Bu

y =Cm+Du
(14)



A = dia (_'i)

B =T-IB

_=CT

_'i= itheigenvalue

controllability matrix

observability matrix

The advantage of using the modalized form given by equation (14)isthatallthe

modes through A matrix, along with the controllabilityand observabilitymatrices

are readilyavailableforan analystto quicklylocateuncontrollableand unobservable

modes. In addition,the modes in the A matrix are decoupled and may be

partitionedinto rigidmodel and elaasticmodel.

The order of the model was reduced to nineteen by deleting the modes above 6 Hz.

Since this model will eventually be used for ride quality study and modal

supperasion design, only those modes less than 6 Hz were retained.

The reduced order, modal model (19th order) is represented by:

_lr=Armr+Br u

y =Crmr+Dru (15)

This model contains one state for heading, one for the spiral mode, two for the

Dutch roll mode, one for roll mode, eight for low-damped elastic modes, and six for

high-damped elastic modes.

To support this study,a special setof sensorswere installedon theaircraftto

measure the dynamic response of thejettransport.The locationsofthesesensors

were based on themode shapes of theaircraftdetermined by themath model and

physicalconstraints(TableI).(A complete discussionon sensorselectionand

locationplacement on the aircraftisomitted hereinforproprietaryreasons.)



TABLE I: Sensor Type and Locations for High-order

Aeroelastic Modeling

SENSOR TYPE

Position Transducer

Yaw Rate Gyro

Lateral Accelerometer

Vertical Accelerometer

Roll rate, Yaw rate,

Bank angle, Heading,

SENSOR LOCATION

On all control surfaces

Pilot seat, IRU (a station between CG and

cockpit below the cabin floor), CG station

1 Pilot seat, 1 Cockpit ceiling, 8 on the

passanger cabin floor from the cockpit to the

aft galley, 1 on the aft galley ceiling, 3 on

vertical tail (tip and mid section, front

and rear spar), three on each nacelle,

1 IRU station

1 on the pilot seat, 1 IRU,

8 on each wing, 3 on each

2 on each nacelle

1 aft galley,

horizontal tail,

IRU and CG stations

The sensors selected for the analysis were: body roll angle (_), heading angle (XF), roll

rate (p) and yaw rate (r) at the IRU; body yaw rate at the pilot seat; 9 lateral

accelerometers along the fuselage; 2 lateral accelerometers on the nacelle number 2;

and 3 lateral accelerometers on the vertical tail.

Input Signal Design

The flight test input-signal design analysis for high-order aeroelastic modeling was

performed using the reduced order analytical model (equation 15). Although a

number of "optimum" input signals have been proposed for flight testing in

conjunction with parameter estimation, none have been found to be appropriate for



high-order aeroelastic modeling. Essentially, all the analytical techniques proposed

in designing the optimum input signals are based on the analytical model. This

model is the subject of improvement by the identification and estimation

techniques. Hence, no "optimum" input signal exists.

A number of different input signals were evaluated for this study. After a

comprehensive simulation study, it was determined that a frequency sweep of a

linear sine-wave with adequate energy to excite all the modes (rigid and elastic)

yeilds the best results. In addition, the linear sine-wave frequency sweep optimizes

the most commonly used criterion for input signal design:

91 = -log (det M) (16)

where M is the Fisher information matrix (or sensitivity matrix) defined by:

M = V_ l(k)
(17)

J is the cost function defined in equation (6). The criterion 91 defined in equation

(16) is related to the volume of highest probability density region for the parameters

k. An interesting property of the determinant criterion is that it is independent of

scaling parameters (Refernce 2).

Fifteen tests were designed for the same flight condition. Five frequency sweeps

were designed for each control surface. Each test was repeated for rudder, aileron,

and both surfaces in phase. The first frequency sweep covered 0 to 6 Hz to excite all

the modes in one test. The other four tests were then designed to excite specifically

high-damped modes by sweeping from .25 Hz below to .25 Hz above the frequency of

the mode.

The amplitude of the input signals were designed to be constant for practical

purposes (i.e., rate limits). The designed input signals were tested in the lab to

confirm that the signals did not saturate the servos and actuators of the control

surfaces. However, the output of the actuators during flight test generated signals

with decaying amplitutes. These decaying amplitudes reduced the energy level

initially designed for the test. Figures I and 2 show the actual control surface
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deflections for rudder sweep alone, and for rudder and aileron surfaces

simultaneously in phase.

Sampling Frequency

To record the data in flight test, a simulation study was conducted to determine the

required sampling frequency. The analytical model (i.e., system equations 15) was

assumed to be the true model, and simulated using the designed input signal. A

considerable amount of noise was added to the simulation data, and then that data

was treated as pseudo-flight data. The acutal model was used for parameter

estimation to determine the required sampling frequency. Sampling frequencies of

20, 25, 50, 100, 200 Hz were considered for this study. One mode or group of modes

at a time were selected for the estimation process of each sampling frequency. The

results indicated that 100 Hz is the best sampling frequency for this study. Figure 3

shows the typical results for identified parameters when different sampling

frequencies were used.
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The flight test was performed using designed linear sine-wave frequency sweeps for

rudder and aileron. The test conditions were conducted at a speed of Mach .6, an

altitude of 15,000 feet, and minimal turbulence. A preprogrammed frequency

function generator was used to apply the linear sinusoidal frequency sweeps (0-6 Hz)

to the aileron and rudder (through the autopilot servo).

The flight test data were recorded with 100 sample per second, and then filtered

using a Graham low-pass filter with the cutoff frequency of 10 Hz and roUoff

frequency of 15 Hz. Prior to estimation analysis, the data were cleaned up by

removing all the sensor biases and data dropouts.

POST FLIGHT ANALYSIS

The analytical model (system equations 15) was simulated using actual control

surface defelection during flight as input signals. The comparison of flight data with

the response of the analytical model for flight condition 41, where both rudder and

aileron frequency sweeps are used, is presented in the Figures 4-11.

The maximum likelihood estimation software tool (MMLE) developed by NASA

Dryden was used to minimize the residuals between flight data and response of the

analytical model in Figures 4-11. At the time of analysis, MMLE was hosted on the

Cyber mainfram. Due to Cyber having a memory limit, the capability of using

process noise was not available for analysis. Hence the results obtained herein, are

preliminary results which do not include the effect of process noise. The final

results of this study will be reported at the 1989 AIAA Guidance, Navigation and

Control conference.

The high-order model was partitioned into two sections: rigid model and elastic

model. For rigid model identification, 15 seconds of data were used. First the rigid

portion of the control and measurement matrices were upgraded. Then, the A

matrix was upgraded. Finally, all the parameters in the rigid section of the A,B and

matrices were simultaneously estimated.



,.,.....,-,

f

f

\

o

s

a

0 ,._

n" _ 'D)
0

m

i

Z-

_L

¢o

o

m
m

o

om
b

o

0
I2.
_)
G)

E
=. I-

.m

IJ.



\
\

i
.8

-\

l

{

i
.. j

0

0

0

c_

E
o_

I.-

• _

e_

u_



!

I
i
!

n.

c
o

m
m

0
u

d_

E
k

i

e

_ E

_p

_ P
.-== _

..q

m

!

i

I1,,

.=.

=.

n

0
_E

_E

em

em
m

14=

1=
om

s_.

E
0
(3

n

m

0

0

f_
c-
O

_J
r.r.

E
m_

I-

&_

OR



C
_ _r

I_---,_ " _

• _ i° i" I° I"

+" _ 600

;f

ii +

i'I-

F-

&..

Im



.r
I i ! o i e

• • • • • •
o i i i i i

GOI

S

m

Ql$

LL

In
In

E
0

4m$

i$.$

0
m
li

n_

w

o
im

i

m

L_

--I

b

o 4)
ul'O
= 0
o_

I= m

E.-_
N_

in

U.



£
m

"0

.1=

cL

c
I=

0

C

m

qo

IT"

_r

c

0
n
4.1

13
C

0
U

01

N

d '-

.i

S o
.c £

v

L

I "
I "
! .

I

4

i

t

• I=
0

m

0

,I=

OR

l-

em
m

U.

e_
em

E
0

el-
m

0
im

_ L.

m

m

L-

--I

o

c-
o

IT-

E
e_

I-

a;

L_

im

Li.



m

a

gl

;s

co

c
8

E

I

E"
v

m

===- _.• ,--. ::::=..
m_m

.m=: _ m

q _..,,..._ ,,..im_ ''''In

g--

• o . . . o
o o o o o o o" o" i" o° 0"

tJ

:i
.._ u.

A "

em
m

U.

e"
em

E
0
0

0
ea

b-
U.

e_
0

el

s.._

m

0
0

m
s.._

...I

0

0
o_

""
m

E."-
e_

em

11_



m

c_
r_

|m
m

U.

3
n

_=
IZ

2
_o
,<
'D
C
W

"0
"0

C_

-C

o
"0
t"
0

U

L

_.m
m

'u

[

E o
1,.. ,,C

E "
v

L

I iJ4

-r--

,.d

1
P

.... -'." , _7_

m

'i

=.

_m

E
0
t)

e,e

m

m

e-
ll

_u

e_e

0
im
e-e

m

<

m

L_

e-e

.J

0
i

r- o
o_
r_

c_

E,--

o_

U.



Two different approches were taken for the elastic model identification. In the first

approach, the 19 th order model was used for the analysis with all the elements of B

and C being estimated. All 70 seconds of data were used for this estimation

approach,. In this process, those parameters in the B andC that did not contribute

to the residuals were identified and kept constant for the remainder of the analysis.

Then, the elements of A were added to the estimation process while keeping some

of the elements of B andC constant. The results of this estimation approach are

show in Figures 12-19.

The second approach was to add one elastic mode at a time to the rigid model. For

this approach, the first elastic mode was added with 28 seconds of data used for the

analysis. The corresponding parameters in the B and C matrices were estimated

every time a mode was added to the model. The result of this approach was not

satisfactory because several times the algorithem diverged and the residuals were

big.

Figures 20-26 show the PSD plots obtained from the analytical model. Figures 27-34

show the PSD plots obtained from the estimated model. The PSD plots obtained

from the estimated model, clearly show that the estimation analysis improved the

accuracy of the model in terms of its modal representation. However, the estimated

parameters in the B and C matrices are biased. Since an accurate representation of

the transfer functions was desired for this study rather than true values of the 13

and C matrices, the biased estimates in the B and C matrices did not create any

problem.

Figures 16, 17 and 19 indicate that another mode is present in the flight data which is

not modeled in the analytical or estimated model. This problem can not be solved

via parameter estimation technique which assumes the structure of the model (i.e.,

the order of the model) is correct. Hence, it is suggested that the system

identification technique developed by V. klein and J. Batterson of NASA LaRC be

used to overcome this problem.
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